Higher Technological Institute - %
Computer Science Department

Oliney e paladt

Computer Graphics

Dr Osama Farouk
Dr Ayman Soliman
Dr Adel Khaled

Lecture Three
Graphics Output Primitives

Circle drawing algorithms

Properties of Circles

A circle (Figure) is defined as the set of points that are all at a given distance r
from a center position (., 1) .

2

(x—x) 4+ W—y)=r (1)

=1 V12— (x —x)7? (2)

Circle with
center coordinates (x,, y.) and
radius r.

But this is not the best method for generating a circle.

One problem with this approach is that it involves
considerable computation at each step. Moreover, the
spacing between plotted pixel positions is not uniform, as

Upper demonstrated in Figure
half of a circle plotted
with Eq. 2 and with

I[IL': }fL} = {[}r D}

Expressing the circle equation in parametric polar form yields the pair of equations

X = X, +rcosf

. (3)
Y = Y +rsinf

=y 0| 0.%) When a display is generated with these
R /. equations using a fixed angular step size,
| (4> 1Y a circle is plotted with equally spaced
- _1_]\ points along the circumference
=y, =0 T O %)

| o 8

The shape of the circle is similar in each quadrant.
) Therefore, if we determine the curve positions in
el ey the first quadrant, we can generate the circle
circle point (x, y)inone octant gection in the second quadrant of the xy plane by
yields the circle points shown))))
for the other seven octants. noting that the two circle sections are symmetric
with respect to the y axis.
And circle sections in the third and fourth
guadrants can be obtained from sections in the
first and second quadrants by considering

symmetry about the x axis.

Midpoint Circle Algorithm

The basic idea in this approach is to test the halfway position between two pixels to
determine if this midpoint is inside or outside the circle boundary.

To apply the midpoint method, we define a circle function as

feire(x, y) = x> + 7 — 12 (4)

< 0, 1if(x, y) is inside the circle boundary

farc(x, y) < =0, if(x, y) is on the circle boundary

=0, if (x, y)is outside the circle boundary

The tests in (5) are performed for the mid positions between
pixels near the circle path at each sampling step.

Assuming that we have just plotted the pixel at (¥, ¥). we next
need to determine whether the pixel at position (x; +1, i) or
the one at position (¥ +1, 1% —1) is closer to the circle. Our
decision parameter is the circle function (4) evaluated at the
midpoint between these two pixels:

N

Midpoint

. - - LM
x, x,+1x +2

K

Midpoint
between candidate pixels at
sampling position x; + 1
along a circular path.

1
Pk = fcjrc (Ik + 1, Y — E)

2

1 y
= (+ 17+ (}ﬂ- — E) —re

(6)

If pr < 0, this midpoint is inside the circle and the pixel on scan line ¥ is closer to the
circle boundary. Otherwise, the midposition is outside or on the circle boundary, and
we select the pixel on scan line 1y —1 .

Successive decision parameters are obtained using incremental calculations.

We obtain a recursive expression for the next decision parameter by evaluating the
circle function at sampling position x..; +1=1x. +2

: 1
Pk+1 = Jeirc (Ik—'l + 1, Yey1 — ;)

.

"

9 1\° ,
= ['lrl"..'; + 1)+]_]" 4 (yﬁ;_] _ _) _ 42
or)

Prs1 = P+ 200+ 1) + {1,:?-+-, — tﬁ} — (W1 — W) + 1 (7)

where yi.1 is either ¥ or y —1 , depending on the sign of px. .

Increments for obtaining Px+1 are either 2x..,+1 (if Px is negative) or 2x;1 + 1—-2y;1.
Evaluation of the terms 2x..; and 2y.; can also be done incrementally as

2401 = 20 + 2
Y1 = 2 — 2

(8)

The initial decision parameter is obtained by evaluating the circle function at the start
position (xo, o) = (0,7) from eq.(6):

i 1
Po = _.fcirc (1: F— E)

If the radius r is specified as an integer, we can simply round pj to

po=1-—r (for r an integer)

Midpoint Circle Algorithm

Midpoint Circle Algorithm

Input radius r and circle center (x, If-), then set the coordinates for the
first point on the circumference of a circle centered on the origin as

(xo0, Yo) = (0, 1)
Calculate the initial value of the decision parameter as

5

FJ'D:E—I"

At each x; position, starting at k = 0, perform the following test. If
P < 0, the next point along the circle centered on (0, 0) is (x3+1, 1) and

Pk+1 = Pk + 2% + 1
Otherwise, the next point along the circle is (x;x + 1, 1 — 1) and
Pk+1 = Pk +2X41 + 1 — 2141
where 2x;.1 = 2x; + 2 and 2y341 = 21 — 2.
Determine symmetry points in the other seven octants.

Move each calculated pixel position (x, y) onto the circular path
centered at (x;, 1/.) and plot the coordinate values:

IZI—FIC, y:y+]ff

Repeat steps 3 through 5 until x = v.

Example: Midpoint Circle Drawing

Given a circle radius r = 10, we demonstrate the midpoint circle
algorithm by determining positions along the circle octant in the

first quadrant from x = 0 to x = y. The initial value of the decision
parameter is

po=1—-r=-9

For the circle centered on the coordinate origin, the initial

point is (xo, ys) = (0, 10), and initial increment terms for
calculating the decision parameters are

2xp0 = 0, 21fp = 20

Successive midpoint decision parameter values and the

corresponding coordinate positions along the circle path are listed
in the following table:

k| Pre| (k1 Y1) | 2241 | 2Yk41
0] -9 (1, 10) 2 20
1| -6 (2, 10) 4 20
2 | -1 (3, 10) 6 20
3 6 (4, 9) 8 18
4 | =3 (5, 9) 10 18
5 8 (6, 8) 12 16
6 5 (7,7) 14 14

f#include <GL/glut.h>

class screenPt
{
private:
GLint x, ¥:

publie:
/* Default Constructor: initializes coordinate position to (0, 0). */
screenPt () {
x=y=0;
1
void setCoords (GLint xCoordValue, GLint yCoordValue) {
x = xCoordValue;
y = yCoordValuoe;

1

GLint getx {) conet (
return x;

1

GLint gety () const {
return y;

1

void dincrementx ()
i+

1

void decrementy () |
¥--:

1

void setPixel (GLint xCoord, GLint yCoord)

{
glBegin (GL_POINTS);
glVertex2i (xCoord, yCoord);
glEnd ();
}
void circleMidpoint (GLint xe, GLint ye, GLint radius)
{
gcreenPt circPt;
GLint p = 1 - radius; f] Initial value for midpoint parameter,

circPt.setCoords (0, radius); // Set coordinates for top point of circle,

void circlePlotPoints (GLint, GLint, screenPt);

/* Plot the initial point in each circle quadrant. */
circlePlotPoints (xe, yc, circPt);

/* Calculate next point and plot in each octant, */

while (circPt.getx () € circPt.gety ()) {
circPt.incrementx {);
if (p < 0)
pt= 2 * circPt.getx () + 1;
elge {
circPt.decrementy ();
pt™ 2 * (circPt.getx () - circPt.gety ()) + 1;
}
circlePlotPoints (xc, yec, circPt);

1

void circlePlotPoints (GLint xc, GLint yc, screenPt circPt)
{

getPixel (xc + circPt.getx (), yc + circPt.gety ());
getPixel (xc - circPt.getx (), yc + circPt.gety ());
getPixel (xc + circPt.getx (), yc - circPt.gety ());
getPixel (x¢ - circPt.getx (), yc - circPt.gety ());
getPixel (=xc + circPt.gety (), yc + circPt.getx ());
getPixel (xc - circPt.gety (), yc + circPt.getx ());
getPixel (xc + circPt.gety (), yc - circPt.getx ());
getPixel (xc - circPt.gety (), yc - circPt.getx ());

L\ uL‘Sf\cﬂ Calvﬁen (& 5. C_\(c\(O o o R
and odivy = 3 pohad p::s:lwﬁ” R lc

<3emfr~fcc) %\!3_ mio' poi~d <A de o ¢ A

X] B
O) S |
\ \ 3 -3
9) { -N-

2 3 \ S

u x|

5 2 |

4 2

£

B \0
EEEO

End of Lecture
Good Luck!

See you
in next lecture...

L
0@ 006

